Nowcasting of fecal coliforms presence using an artificial neuron network in India

Asaf Pras

Advisor: Prof. Hadas Mamane

Water-tech lab

Research motivation -Global safe water shortage

• 2 billion

Lack safely managed drinking water

• 771 million

Without basic drinking water services

• 159 million

Drink water directly from surface water (streams or lakes)

• 800 children

Under 5 years of age die daily because of using unsafe drinking water

Research motivation -Global safe water shortage

Population expansion, urbanization and industrialization

Increased effluent production

Insufficient sewage infrastructure and water treatment plants

Contaminated water sources

Drinking water quality monitoring

- Water quality should be routinely analyzed
- Many kinds of parameters can be monitored in real-time
- Accurate information of biological contamination is an integral part of water systems management

Fecal coliforms monitoring

- Fecal coliforms (FC) or Escherichia coliform should be tested
- WHO standard is o MPN/100ml
- Traditional monitoring test takes at least 18-24h
- In rural communities the test routine is infrequent up to 6 months
- Real-time monitoring is expansive

The Goal

• Find a cheap, real-time and in-situ solution for FC monitoring

The Data

- Was collected by the Central Pollution Control Board of India
- From throughout India
- Various kinds of sources
- A large number of parameters

Our solution

- FC sensor based on machine learning or artificial intelligence, which uses easy-to-monitor, real-time and *in situ* parameters as inputs
- Gives a 'nowcast' of FC absence or presence in water sources
- Can be later upgraded for more parameters

Method

- Using a multilayer perceptron model
- The model is fed in with the following low-cost and easy to monitor parameters:
 - Temperature
 - pH
 - Electrical conductivity
 - Total dissolved solids
 - Dissolved oxygen
 - Turbidity
 - Geographical parameters (Type of source, and location)

Results – Confusion matrix

Accuracy = TP + TN = 92%

Sensitivity =
$$\frac{TP}{FN + TP} = 98\%$$

$$Precision = \frac{TP}{FP + TP} = 93\%$$

Specificity =
$$\frac{\text{TN}}{\text{FP} + \text{TN}} = 75\%$$

True label

Predicted label

Results – Biological load effect on sensitivity

Fecal coliforms load sensitivity

Results – Probability histogram

• The probability of a sample to be present

Sensitivity–specificity–precision tradeoffs		TN	FP
 when raising the cutoff to 0.75: Accuracy: 90.56% Sensitivity: 92.66% Precision: 95.34% Specificity: 82.36% 	Absent -	13.2% (1017)	7.3% (559)
	True label	FN	ТР
 when lowering the cutoff to 0.25: Accuracy: 92.54% Sensitivity: 99.74% Precision: 91.63% Specificity: 64.53% 	Present -	0.02% (16)	79.4% (6118)
~p************************************		Absent Predicte	Present d label

Results –

Summary

- We showed the feasibility of nowcasting FC contamination:
 - About 93% of accuracy
 - 98% of sensitivity
 - 93 of precision
- By moving the threshold, we can "trade" sensitivity with precision

Thanks for listening Drink water and keep safe

